Menu

Leaky Gut Syndrome and Candida Yeast

How Yeast Cause Leaky Gut Syndrome

 
Leaky gut syndrome can be caused, or aggravated by, Candida overgrowth in the gut. Candida can literally drill into tissue surfaces; this penetration, can lead to a weakness of that tissue.
Leaky gut syndrome can be caused, or aggravated by, Candida overgrowth in the gut. Candida can literally drill into tissue surfaces; this penetration, can lead to a weakness of that tissue.

Candida species that grow hyphae (long, thin germ tubes), may be a factor in causing, or aggravating, leaky gut syndrome. The hyphal growths, of various Candida species, have been proven to elevate their virulence and ability to invade other sectors of the body. These hyphae, can burrow into the walls of the intestines. Additionally, Candida also secretes an enzyme that breaks down the protective layers of mucous that typically form a chemical barrier to the food and microbiota traveling through the intestines. By attaching itself to the mucous membranes of the intestines, dissolving the protective mucous, and drilling holes into the intestinal wall, Candida may instigate leaky gut syndrome; or aggravate this condition.

The toxins Candida yeast create, also may weaken the immune system. This speculation, was made by a study published in Contributions to Microbiology and Immunology [4 (1976): 77-85]. With the physical progress yeast can make through the gut into the bloodstream, and the potential stymying of the immune system via toxins, Candida may be a significant detriment to health. Other things, such as partially digested food and microorganisms, may also follow through the breaches Candida makes in the intestinal wall. This could, in turn, result in various allergic reactions and bacterial infections throughout the body.

Inflammation and Leaky Gut Syndrome

Inflammation of the intestinal walls can cause the tiny pores, that normally allow digested nutrients into the bloodstream, to widen. Once these pores become too big; food, bacteria, and yeast can start to slip through and enter the bloodstream. According to a study published in Current Opinion in Microbiology [14.4 (2011): 386-391], inflammation increases Candida overgrowth; and, Candida overgrowth worsens inflammation. According to the study:

Since inflammation increases the likelihood of significant Candida colonization and Candida colonization reduces healing of lesions, these effects would produce a vicious cycle. The presence of inflammation alters bacterial colonization and the activities of the host, creating conditions that favor both high level Candida colonization and exacerbation of disease.

Current Opinion in Microbiology [14.4 (2011): 386-391]

Consequently, Candida can start a terrible cycle into motion in the digestive system: prompting inflammation and spreading to the newly inflamed areas. The only way to effectively stop this, is to eliminate the overgrowth of yeast in the gut. This should reduce the size of the pores in the intestines, and help to ameliorate leaky gut syndrome.

Candida Degradates Intestinal Surfaces

Candida can play a part in weakening intestinal barriers, and cause leaky gut syndrome. Natural remedies are very efficacious at killing Candida; and, may help improve your digestive system health!
Candida can play a part in weakening intestinal barriers, and cause leaky gut syndrome. Natural remedies are very efficacious at killing Candida; and, may help improve your digestive system health!

A study, published in Infection and Immunity [64.11 (1996): 4514-4519], found that Candida albicans was able to break down the mucin produced by the intestinal mucous membranes with a proteinase enzyme (an enzyme that can break down certain proteins). The researchers speculated, that this was a key element in how Candida albicans was able to break through the chemical barrier provided by mucins surrounding the intestine’s epithelial walls. The researchers in the study, cited various research, that proved Candida albicans secretes an enzyme which breaks down proteins and can degredate epithelial keratin (a protein which protects epithelial cells), dermal collagen (the intestines contain collagen as well), albumin (the main protein in human blood), hemoglobin (a protein which carries oxygen), and immunoglobulin A (an antibody that plays a critical role in mucosal immunity).

Another study, published in FEMS Microbiology Letters [153.2 (1997): 349-355], showed that Candida albicans was able to break down the endothelium. The endothelium is a thin layer of flat epithelial cells (cells which cover, or line, various body surfaces) that lines the lymph vessels, blood vessels, and the inner cavities of the heart. Thus, given Candida’s ability to break down this layer of cells, it could enter through the epithelium (a layer of cells surrounding the outer part of the intestinal wall), break down the endothelium, and enter into the bloodstream. The researchers stated the following:

Candida albicans infections in severely immunocompromised patients are not confined to mucosal surfaces; instead the fungus can invade through epithelial and endothelial layers into the bloodstream and spread to other organs, causing disseminated infections with often fatal outcome… Our results demonstrate that the C. albicans acid proteinase degrades human subendothelial extracellular matrix; this may be of importance in the penetration of C. albicans into circulation and deep organs.
FEMS Microbiology Letters [153.2 (1997): 349-355]

Another study, conducted on mice by giving them intestinal yeast infections, was published in Medical Mycology [42.5 (2004): 439-447]. The study used two primary types of Candida albicans: strains that could produce normal hyphal growth, and strains that failed to produce normal hyphal growth. The study found that the strains that could produce germ tube hyphae, were much more virulent. The strains capable of normally forming hyphae, would kill the mice they were tested on; and, could travel from the intestines to other organs in the mice. Some of the mice, with the virulent hyphal strains of Candida albicans, died from Candida colonizing their kidneys. The reduced presence, of hyphal growth deficient yeast, in examined mice body tissue and lack of colonization efficacy; was suggested by the researchers, to potentially be due to the lack of adequate hyphal growth. Hyphal growth deficient yeast, were also unable to kill the mice after they were inoculated. Consequently, this study proves that, Candida albicans, can move from the gut to other areas of the body; likely due to its ability to burrow into the walls of the intestines with hyphal growths.

Hyphal Candida Species

Pictured here is Candida albicans. This species of yeast can grow germ tubes (hyphal growths). This species is also responsible for about 80% of all yeast infections; and, therefore, is of primary importance.
Pictured here is Candida albicans. This species of yeast can grow germ tubes (hyphal growths). This species is also responsible for about 80% of all yeast infections; and, therefore, is of primary importance.

Not all species of Candida grow hyphae. Some are dimorphic, meaning they exist as single cells (blastoconidia) and as germ tubes (hyphae). Before 1995, all germ tube positive Candida species were identified as Candida albicans. According to a study published in Indian Journal of Pathology and Microbiology [40 (1997): 55-58], Candida albicans and Candida parapsilosis show very strong hyphal growth. For more information on Candida’s hyphal growth, feel free to check out this article: Candida Hyphae Germ Tubes. The following species form hyphae, and are more virulent than Candida species that do not form hyphae:

  • Candida albicans
  • Candida tropicalis
  • Candida parapsilosis
  • Candida dubliniensis

Sarah Summer’s 12 Hour Cure for Yeast Infections

Sarah Summer Yeast Infection Review

Sarah Summer is one woman who had an arduous battle with vaginal Candida outbreaks. It seemed every time she treated them, they would soon return and interrupt her life yet again. This cycle of treatment and recurrence went on for some time; until, she developed a particularly severe yeast infection.

Upon deciding this yeast infection was different from past outbreaks, Sarah quickly went to her doctor for help. Her doctor, after examining her, told her that the yeast in her vagina had developed into a mold. This mold had sent out long tendrils into her skin and entrenched itself in her body. Sarah’s doctor told her that not only was this type of infection difficult to treat, it was impossible to cure. Faced with a lengthy, perhaps impossible to win, battle with yeast, she decided to look for what answers would avail themselves.

Together with her Husband Robert, the two began to diligently study the various facets of Candidiasis. Sarah decided to look for the root causes that predisposed her to these outbreaks. Eventually, Sarah and Robert found out how to address the root causes of Candidiasis and naturally eliminate the yeast in her vagina. Within a short time of applying this new therapy, Sarah was fully free from Candida. And, her yeast infections stayed gone.

Sarah decided to publish her findings and share what she learned with others in similar battles with Candida. She offers an 8 week, 100% money back guarantee on her publication as well. If you find the book unsatisfactory, you can get all your invested finances back promptly. Her book is published electronically by a subsidiary of Keynetics Incorporated. If you’d like to find out more about Sarah, her book, or testimonies of people who’ve used it, you can do so at Sarah’s website.

Disclaimer

Some websites, material, or products recommended by or linked to by this website may promote holistic medicine. This website is not endorsing or recommending any spiritual practice, yoga, metaphysical thought, or any holistic therapy. These practices merely show up in material discussed or promoted (such as books) on this website. If you choose to engage in holistic therapies, that is your decision.

For more information on how to use the information of this website, you can always view the website disclaimer. Thank you!

SOURCES: